Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Rep ; 43(4): 94, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472660

RESUMO

KEY MESSAGE: Taxadiene synthase, taxadiene-5α-hydroxylase, and taxane 13α-hydroxylase genes were introduced into Nicotiana benthamiana, and the improved resistance to lepidoptera pest fall armyworm was reported. Fall armyworm (FAW) is a serious agricultural pest. Genetic engineering techniques have been used to create pest-resistant plant varieties for reducing pest damage. Paclitaxel is a diterpenoid natural metabolite with antineoplastic effects in medicine. However, the effects of taxanes on the growth and development of lepidoptera pests, such as the FAW, are unknown. Here, selected paclitaxel precursor biosynthesis pathway genes, taxadiene synthase, taxane 5α-hydroxylase, and taxane 13α-hydroxylase, were engineered in the heterologous host Nicotiana benthamiana plants. Bioassay experiments showed that the transgenic N. benthamiana plants displayed improved resistance to FAW infestation, with degeneration of gut tissues and induced expression of apoptosis-related genes. Cytotoxicity experiment showed that the paclitaxel precursor, 10-deacetylbaccatin III, is cytotoxic to Sf9 cells, causing cell cycle arrest at the G2/M phase and disorder of the cytoskeleton. Metabolome analysis showed that heterologous expression of taxane genes in N. benthamiana affected the digestive system, steroid hormone and purine metabolism pathways of FAW larvae. In summary, this study provides a candidate approach for FAW control.


Assuntos
Hidrocarbonetos Aromáticos com Pontes , Tabaco , Taxoides , Animais , Spodoptera , Taxoides/metabolismo , Taxoides/farmacologia , Paclitaxel/farmacologia , Plantas Geneticamente Modificadas/metabolismo , Larva
2.
Int J Mol Sci ; 23(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36499148

RESUMO

Insect development requires genes to be expressed in strict spatiotemporal order. The dynamic regulation of genes involved in insect development is partly orchestrated by the histone acetylation-deacetylation via histone acetyltransferases (HATs) and histone deacetylases (HDACs). Although histone deacetylase 3 (HDAC3) is required for mice during early embryonic development, its functions in Helicoverpa armigera (H. armigera) and its potential to be used as a target of insecticides remain unclear. We treated H. armigera with HDAC3 siRNA and RGFP966, a specific inhibitor, examining how the HDAC3 loss-of-function affects growth and development. HDAC3 siRNA and RGFP966 treatment increased mortality at each growth stage and altered metamorphosis, hampering pupation and causing abnormal wing development, reduced egg production, and reduced hatching rate. We believe that the misregulation of key hormone-related genes leads to abnormal pupa development in HDAC3 knockout insects. RNA-seq analysis identified 2788 differentially expressed genes (≥two-fold change; p ≤ 0.05) between siHDAC3- and siNC-treated larvae. Krüppel homolog 1 (Kr-h1), was differentially expressed in HDAC3 knockdown larvae. Pathway-enrichment analysis revealed the significant enrichment of genes involved in the Hippo, MAPK, and Wnt signaling pathways following HDAC3 knockdown. Histone H3K9 acetylation was increased in H. armigera after siHDAC3 treatment. In conclusion, HDAC3 knockdown dysregulated juvenile hormone (JH)-related and apoptosis-related genes in H. armigera. The results showed that the HDAC3 gene is a potential target for fighting H. armigera.


Assuntos
Hormônios Juvenis , Mariposas , Camundongos , Animais , Hormônios Juvenis/farmacologia , Hormônios Juvenis/metabolismo , Histonas/genética , Histonas/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Mariposas/metabolismo , Apoptose/genética , Larva/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...